
New Cryptands Synthesized by [2+3] Condensation and Reduction with or without Templates†

Zhen Ma, Rudong Yang* and Lan Yan

Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China

A Schiff base cryptand is synthesized in 65–75 and 20% yield, respectively, via one-step [2+3] condensation of a flexible dialdehyde with tris(2-aminoethyl)amine in the presence and absence of template; a polyoxa-aza cryptand is synthesized in 75% yield upon reduction of the Schiff base.

Characterized by distinctive receptor sites with hydrophilic, multi-dimentional and circular cavities, Schiff-base and polyaza cryptands are suitable as hosts for inorganic and organic guests. Owing to their special and novel structures, they provide impetus for chemists to design a large number of such compounds for use in many fields, such as molecular recognition, catalysis and transport.^{1–3} Since the work of Jazwinski *et al.*,⁴ many new Schiff-base and polyaza cryptands, in which nitrogen is the main heteroatom and which show special coordinative abilities toward transition metal elements, have been synthesized^{5–7} by [2 + 3] condensation of dialdehydes and tris(2-aminoethyl)amine followed by reduction, in simple and high yield processes.

Scheme 1

Although Schiff-base and polyaza cryptands have such advantages mentioned above, some Schiff-bases readily polymerize in some solvents and the dialdehydes require rigid structures.⁶ To circumvent these difficulties, high-dilution techniques and the use of templates such as alkali or transition metal ions are used to increase yields

J. Chem. Research (S), 1999, 712–713[†]

seldom, however, have rare earth elements³ been used. We synthesized two new cryptands which contain not only nitrogen but also oxygen atoms by [2+3] condensation of a flexible dialdehyde A with tris(2-aminoethyl)amine both with and without template ions. The resulting cryptand L¹ upon reduction gave a high yield of saturated L^2 (Scheme 1). Dialdehyde A and tris(2-aminoethyl)amine were prepared as reported^{8,9} and underwent [2+3] condensation to form L^1 in acetonitrile or corresponding cryptates in ethanol when templates were used. L¹ was obtained after removal of template ions from the cryptates and the yields were much higher than in the former method. Cryptand L^2 was obtained in 75% yield when L^1 was reduced with KBH₄ in methanol. IR spectra showed strong $v_{C=N}$ absorption of L¹ at 1644 cm⁻¹ but exhibited no $v_{\rm NH_2}$ or $v_{\rm C=0}$ bands. After reduction, the bands due to C=N disappeared and a new N-H band emerged at 3297 cm⁻¹. Cryptand L¹ turned yellow after several weeks, and IR and ¹HNMR showed that it had decomposed. The solvents used in condensation are important in terms of obtained yields⁶ and L^1 was not obtained in THF.

All rare earth elements (except Pm) can be used as templates to synthesize L^1 while several other ions such as K^+ , Cu^{2+} and Zn^{2+} could also be used as templates, which formed more stable cryptates with L^1 than did the rare earth elements. No L^1 was obtained when K^+ and Na⁺ were used as templates since the former in its cryptate could not be removed whilst the latter, which did not form a cryptate with L^1 simply led to polymerization. While L^1 is a good host for K^+ and transition metal elements it is less so for rare earth elements or Na⁺ with DMF or DMSO solutions of the rare earth cryptates undergoing decomposition. L^2 , however, is a good host for both rare earth and transition metal elements with DMF or DMSO solutions of the cryptates being stable. All cryptates of L^1 were stable in the air in contrast to L^1 itself.

Experimental

Syntheses of L^1 by a High Dilution Method.—Tris(2-aminoethyl)amine (1.0 mmol) in 50 ml of acetonitrile was added dropwise to a solution of dialdehyde **A** (1.5 mmol) in 450 ml of acetonitrile within 2 h at ambient temperature. Stirring for 24 h led to slow formation of a white powder which was collected by filtration and purified using a silica chromatographic column [MeOH–CHCl₃ (5:95)] to give L¹ in 20% yield (no mp evident from DTA–TG). $\delta_{\rm H}$ (80 MHz, CDCl₃), 2.8 (br s, 12H, H^a), 3.5 (br s, 12H, H^b), 4.4 (s, 12H, H^d), 6.6 (d, 12H, C₆H₄), 6.7 (d, 12H C₆H₄), 7.6 (s, 6H, H^c) (Found: C, 70.35; H, 7.01; N, 11.07. C₆₀H₆₆N₈O₆ · 1.5H₂O requires C, 70.50; H, 6.80; N, 10.96%).

General Procedure for the Template Synthesis of L^1 .—Solutions of dialdehyde A (1.5 mmol) and a nitrate salt of the template ion (1.2 mmol) in 150 ml of absolute ethanol were refluxed until the precipitate dissolved completely. Tris(2-aminoethyl)amine (1.0 mmol) in 30 ml of absolute ethanol was then added dropwise within 2 h and the solution cooled to ambient temperature. After stirring for 24 h, the solid formed was collected by filtration and dried *in vacuo*, to give the pure cryptate in 60–85% yield. To protect rare

^{*}To receive any correspondence.

[†] This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S), 1999, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (M).

earth ions from hydrolysis, several ml of ethyl orthoformate was added. Ions such as $La^{3+},\,Sm^{3+},\,Y^{3+},\,Cu^{2+}$ and Zn^{2+} were removed from their cryptates by addition of 0.5 mol dm⁻³ sodium hydroxide, 1:1 aqueous ammonia or 0.5 mol dm⁻³ Na₂S giving precipitates which were separated from the solution by filtration. The precipitate was dissolved in methanol-chloroform (1:9) and after filtration, the filtrate was evaporated to dryness and a white solid formed. Recrystallization from MeCN-CH₂Cl₂ (1:1), gave pure L¹ (yield 65-75%).

Syntheses of L^2 by Reduction.—The L^1 (1 mmol) was mixed with KBH₄ (20 mmol) in 50 ml of absolute methanol, stirred for 30 min and refluxed for 3 h. Then the solvent was distilled off and precipitate was washed twice with water and dissolved in MeOH-CHCl₃ (1:4). After the remaining precipitate was filtered off the filtrate was evaporated completely to give L^2 which was recrystallized from MeCN-MeOH-CH₂Cl₂ (5:1:4) as a pure white power (yield 75%) (no mp was obtained). $\delta_{\rm H}$ (80 MHz, CDCl₃) 2.3 (br s, 6H, -NH) 2.7 (br s, 12H, Ha'), 2.9 (br s, 12H, Hb'), 3.7 (br s, 12H, Hc'), 4.3 (b) s, 12H, H'), 2.9 (b) s, 12H, H'), 5.7 (b) s, 12H, H'), 4.5 (b) s, 12H, H'), 6.6 (d, 12H, benzene), 6.8 (d, 12H, benzene). δ_{C} [100 MHz, CDCl₃–CD₃OD (4:1)] 46.48 (6C, C^{a'}), 51.96 (6C, C^{b'}), 53.13 (6C, C^{c'}), 66.29 (6C, C^{d'}), 114.11 (12C), 128.65 (12C), 131.36 (6C), 157.16 (6C, aromatic) (Found: C, 70.87, H, 7.78; N, 10.84; C₆₀H₇₈N₈O₆·0.5H₂O requires C, 70.91; H, 7.84; N, 11.03%).

This work was financially supported by National Natural Science Foundation of China (29571013) and the National Education Committee's Doctoral Foundation of China (9573005).

Received, 22nd June 1999; Accepted, 27th August 1999 Paper E/9/04973H

References

- J. S. Bradshaw, K. E. Krakowiak, H. Y. An, T. M. Wang, C. 1 Y. Zhu and R. M. Izatt, *Tetrahedron Lett.*, 1992, **33**, 4871. K. G. Ragunathan and P. K Bharadwaj, *Tetrahedron Lett.*,
- 2 1992, 33, 7581.
- 3 S. Y. Yu, Q. M. Wang, B. Wu, X. T Wu, H. M. Hu, L. F. Wang and A. X. Wu, *Polyhedron*, 1997, 16, 321.
 J. Jazwinski, J. M. Lehn, D. Lilienbaum, R. Ziessel, J.
- 4 Guilhem and C. Pascard, J. Chem. Soc., Chem Commun., 1987, 1691
- 5 V. Mekee, W. T. Robinson, D. McDowell and J. Nelson, Tetrahedron Lett., 1989, 30, 7453.
- D. Chen and A. E. Martell, Tetrahedron, 1991, 47, 6895. 6
- D. MacDowell and J. Nelson, Tetrahedron Lett., 1988, 29, 385. 7 8 Z. Zhang, Y. Z. Qiu and Z. Y. Yang, Nanjing Daxue Xuebao, 1990, 26, 263.
- 9 S. Kimura, S. Young and J. P. Collman, Inorg. Chem., 1970, 9, 1183.